IT/CE ASSIGNMENT

Breaking

Friday, 18 November 2016

Maths Tutorial

Tutorial-1

1.   Find the differential equation of family of curves where
2.   Form differential equation of the cardiod
3.   Find the differential equation of all parabolas with x-axis as the axis and (a,0) as focus
4.   Solve
5.   Solve
6.   Solve
7.   Solve
8.   Solve
9.   Solve









Tutorial-2

1.   Solve
2.   Solve
3.   Solve
4.   Solve
5.   Solve
6.   Solve
7.   Solve
8.   Solve
9.   Solve
10.    Solve








Tutorial-3

1.   Solve
2.   Solve
3.   Solve
4.   Solve
5.   Solve
6.   Solve
7.   Solve
8.   Solve
9.   Solve
10.Solve










Tutorial – 4

1.   Verify that the functions  and  form a basis of solution of and then solve it when  and

2.   Find the general solution of where one of the solution is
3.   Solve where is one of its solution.
4.   Solve  ;
5.   Solve
6.   Solve
7.   Solve
8.   Solve
9.   Solve
10.  Solve where and
11.  Solve

12.  Solve the following differential equations by Method Of Variation  of Parameters

(1)   
(2)  
(3)  
(4)  
(5)  
(6)  
Tutorial-5
Ø Solve the following differential equations
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  


Ø Solve the following differential equations by Method of Undetermined Coefficients
1.  
2.  
3.  
4.  





Tutorial-6

Ø Solve the following differential equations
1.  
2.  
3.  
4.  
5.  
6.  

Ø Find the Series solution of

Ø Solve by Poer series method

Ø Find the Series solution of around an ordinary point








Tutorial 7
1.    Find the Fourier series for f(x)  = x cos x  in (0,2) and (-,).

2.    Find  the Fourier series for  and Hence deduce that
3.    Obtain Fourier series for (- < x < ).
4.    Obtain Fourier series for in – < x < .Hence show that
   (i)          (ii)         (iii)                    
5.    Obtain Fourier expansion for
6.    Obtain Fourier series for         
7.    Obtain Fourier series for  and Hence deduce that .
8.    Find Fourier series for  in the range
9.    . Find the Fourier series of the periodic function f(x).
     and hence Deduce that .
10. Obtain Half-range sine & cosine series  for    
11. Find the half- range cosine series for f(x) =  in 0 < x < 1 and                                                
       Hence deduce that        ( i)           (ii)                                                  
                          
Tutorial 8

1.    Find the Laplace Transform of the following. Show the detail of your work
(i)   sin t                 (ii)   cos t              (iii)
     (iv)                 (v)              (vi)                           
2.    Find the Laplace Transform. (Show the detail)
             (i)                         (ii)            (iii)
    (iv)                (v)             (vi)                           
3.    Find the Laplace Transform of the following,
              (i)                    (ii)                      (iii)
    (iv)            (v)        (vi)    
    (vii)                 (viii)                      (ix)     
4.    Find the Laplace Transform of the following functions
        (i)           
                                
                (ii)        
                                  






Tutorial-9

1.    Find the Inverse Laplace Transform of the following. Show the detail of your work
(i)               (ii)            (iii)
    (iv)                     (v)                        (vi)     
    (vii)                 (viii)         
2.    Find the Inverse Laplace Transform of the following functions
(i)                     (ii)   
(iii)                                       (iv)   
              (v)                                (vi)   
 
3.    Find the L.T. of the following. (Differentiation of L.T. method)
      (i)         (ii)
4.    Find the I.L.T. of the following
      (i)         (ii)    (iii)

                  
            


Tutorial – 10

1.    Find the L.T. and I.L.T. of the following. ( Integration of L.T. method)
    (i)         (ii)    (iii)
2.    Find the I.L.T. of the following. (Division by power of s method)
       (i)       (ii)    (iii)  (iv)
3.    Prove that , then
                                                            
4.    Evaluate (i)       (ii)                                                                                   
5.    Show that
6.    Solve the following initial value  problems
(i)
(ii)
(i)  
7.    Solve the given problems

 (1)                (2)                      (3)                     
           (4)                  (5)      (6)
 (7)             (8)                (9)    





     
   
 







No comments:

Post a Comment